Groundwater Numerical Modeling and Environmental Design Using Artificial Neural Networks and Differential Evolution
نویسندگان
چکیده
A Differential Evolution (DE) algorithm is combined with an Artificial Neural Network (ANN) to examine different operational strategies for the productive pumping wells located in the Northern part of Rhodes Island in Greece. The objective is to maximize the pumping rate without violating the environmental constraints associated with the water table drawdown at critical locations. The hydraulic head field is simulated using a groundwater flow simulator that solves numerically a system of partial differential equations. Successive calls to the simulator are used to provide the training data to the ANN. Then the ANN is used as an approximation model to the simulator, successively called by the DE algorithm to evaluate candidate solutions. The adopted procedure provides the ability to test different scenarios, concerning the optimization constraints, without retraining of the ANN, which significantly reduces the computational cost of the procedure.
منابع مشابه
Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran
Groundwater quality management is the most important issue in many arid and semi-arid countries, including Iran.Artificial neural network (ANN) has an extensive range of applications in water resources management. In this study,artificial neural network was developed using MATLAB R2013 software package, and Cl, EC, SO4 and NO3 qualitativeparameters were estimated and compared with the measured ...
متن کاملPareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملPrediction and modeling of fluoride concentrations in groundwater resources using an artificial neural network: a case study in Khaf
Background: One issue of concern in water supply is the quality of water. Measuring the qualitative parameters of water is time-consuming and costly. Predicting these parameters using various models leads to a reduction in related expenses and the presentation of overall and comprehensive statistics for water resource management. Methods: The present study used an artificial neural...
متن کاملModeling and zoning of land subsidence in the southwest of Tehran using artificial neural networks
The earth's surface, due to its natural conditions and its structure is always changing and reshaping. One of the created deformations is the land subsidence. This is the most dangerous events which can be seen in most urban areas especially in the agricultural plains today. This study aims at zoning land subsidence and recognition of geometrical factors in southwest of Tehran. To estimate and ...
متن کاملForecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach
Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008